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1 Introduction

Explicit stationary traveling wave solutions of nonlinear dispersive

evolution and wave equations can be derived using a variety of well-known

techniques. Notable among these are direct integration (wherever

possible), the inverse scattering method [Ablowitz and Segur 1981], the

Backlund transformation technique [Miura 1976], the Hirota method [Hirota

1980], ' perturbation ' techniques [Sawada and Kotera 1974, Rosales 1978,

Whitham 1979, Wadati and Sawada 1980a,b and Hickernell 1983], the

summation process of the Pad6 type [Turchetti 1980 and Liverani and

Turchetti 1983], direct linearization techniques [Taflin 1983 and Santini

et al 1984], the Fredholm determinant method [P6ppe 1983, 1984] and the

real exponential approach [Korpel 1978, Hereman et al 1985, 1986]. For

instance, when any of the above methods are applied to the Korteweg-de

Vries (KdV) equation, one can readily derive the well-known sech2 K (x -

vt) -type solution, where v, the constant velocity of the hump-type

solitary wave, is related to the width 1/K. In fact, the real exponential

approach has been employed to derive single solitary wave solutions of a

large class of nonlinear evolution and wave equations. A comprehensive

list of these equations and their solutions may be found in Hereman et al

(1986).

However, in trying to derive a hump-type solution for the Harry Dym

(HD) equation [Wadati et al 1979, Wadati et al 1980, Case 1982, Weiss

1983, Kawamato 1984, Hereman et al 1989], it was found that no such 0.

solution could be obtained. All the equations listed in Hereman et al (1986)

allow for solutions in terms of elementary functions (most often rational
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ones) of real exponentials, e K (x - vt) + 8, where 8 is a constant phase. The

difficulty with the HD equation is that the phase is no longer constant but

satisfies a transcendental equation. The presence of this transcendental

phase gives rise to an implicit solution which when solved and plotted,

resembles a cusp solitary wave [Hereman et al 1989].

In retrospect, the fact that nonlinear evolution and wave equations

may have implicit solutions does not appear totally unnatural. For

instance, recall that in the real exponential approach as originally

introduced by Korpel (1978), the final solution for the nonlinear equation

is assumed to be built up from the nonlinear mixings of the real

exponential solutions to the linear dispersive part of the PDE.

Alternatively, we may think of constructing a particular solution from the

solution to the nonlinear nondispersive part of the PDE. This is a valid

conjecture, since the nonlinear nondispersive part of the KdV equation in

u(x,t)

ut + uux = 0, (1)

where the subscripts refer to the partial derivatives, possesses shock

wave solutions [Whitham 1974] that are intrinsically implicit:

u(x,t) = g(x - u(x,t)t). (2)

The implicit solution of the HD equation,
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ut =u3 U3x (3)

can be written similarly as [Hereman et al 1989] u(x,t) = F(f), with f = x -

vt + G(f), and where Gf = 1 - F.

Based on these two examples and on the discussion above, we may

think of solutions to an arbitrary nonlinear dispersive PDE to be of the

form

u(x,t) = F(f) (4a)

with

f(x,t) = H, (f)x - H2 (f)t + H3 (f), (4b)

where f(x,t) may be regarded as a Riemann invariant while the implicit

solution u is what has been known as the Riemann wave [Whitham 1974,

Kalinowski 1982].

True, the HD equation is different from other nonlinear dispersive

evolution equations (viz. the KdV : ut + auux + u3x = 0) in the sense that it

does not possess a linear dispersive part. Is it true, therefore, that this

feature ensures that its solution is an implicit one, since no implicit

solutions of equations like the KdV equation have been reported? We have,

on the basis of our examination of some nonlinear evolution and wave

equations, found the answer to be negative. One may be led to argue that

the implicit nature of the solutions to the HD and the kinematic wave
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equations is due to the existence of a hodograph transformation, involving

a change of dependent and independent variables, which transforms the

equations into explicit solvable ones. For instance, the HD can be

transformed into the modified KdV (mKdV) equation [Hereman et al 1989]

as follows. Using the hodograph transtormation

X= f x ds (5)
-00 u(s,t)

eq. (3) can be recast into the auxiliary equation

Rt - R3 X - (3 Rx /R2 )( 1/2 RX 2 - RR 2 X) =0 (6)

for R( X(x,t),t) = u(x,t), where the new independent variable X depends on x

and t through the old dependent variable u. By the Cole-Hopf transformation

R = x/ F, (6) can then be further reduced to the mKdV in F.

Along the same vein, (1) can be "linearized" into

Xt = u, (7)

with

x - X(ut) = x u(x,s) ds (8)

Incidentally, the hodograph transformations (5) and (8), also cause



decoupling of the nonlinearity from dispersion. Inversion of the hodograph

transformations clearly make the explicit solutions of (6) and (7) implicit.

In this paper we investigate the possibility of constructing implicit

solitary wave solutions to some integrable PDEs, e.g., the KdV, the mKdV

and the Boussinesq (BE) equations. A brief discussion on the nature of

these solutions, the role of dispersion, the significance of such implicit

solutions and general speculation on whether these solution could have

been obtained usirj the real exponential method is now in order. We remind

readers that the implicit nature of the solutions to the HD equation and the

kinematic wave equation comes from the hodograph transformation as

explained in the previous paragraph. Furthermore, if the implicit solution

of the HD equation is retransformed hodographically to a possible solution

of the KdV (or mKdV), the result is an explicit solution of the latter

equation containing a mixture of exponential and rational forms. However,

the solutions of the KdV, the mKdV and the BE which we will present below

are inherently implicit, and different from both the well-known explicit

solutions derivable from classical inverse-scattering or direct integration

and the rational-exponential explicit solutions obtainable from the

implicit solution of the HD.

It is worthwhile to note that the role of dispersion, as projected in

conventional physical pictures of solitary wave formation, is now

somewhat different. The traditional picture portrays nonlinearity to cause

steepening of a (baseband) pulse and dispersion to cause spreading,

resulting in a smooth hump-type solution which remains unchanged in

shape as it travels. From a more relaxed viewpoint, we can visualize the

dispersion in, for instance, the KdV, as being instrumental in preserving
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the shape of the pulse, which would otherwise have continually steepened

from the action of the nonlinearity alone till the advent of shock. The

latter is portrayed by the solution to the kinematic wave equation (see eq.

(2)).

We also remark that if we restrict ourselves to implicit single

solitary wave solutions, integrability is not an essential factor since it is

possible to apply our method to nonintegrable versions of the BE, viz., the

improved and the modified improved Boussinesq equations [Iskandar and

Jain 1980, Soerensen et al 1982].

The organization of the paper is as follows. In Section 2, we develop

the solution method taking (4) as our starting point. We then use it for the

HD equation as our first example (Section 3). In Section 4 we obtain a new

solution for the KdV equation which is then checked numerically by putting

it in as an initial condition and, thereafter, monitoring its propagation.

This is then followed up by examples constituting the mKdV equation

(Section 5) and the BE equation (Section 6). Conditions for the existence of

implicit solutions, including the conditions on the functions H1 and H2 will

also be specified.

2 The Solution Method

The procedure for attempting to find implicit solitary wave solutions

of nonlinear PDEs may be summarized in the following steps

1) We start from the general form suggested in eq. (4) and rewrite the

given equation as a differential equation for F(f). The coefficients in this
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ODE will include H1 , H2 and H3 and their derivatives with respect to f. This

is achieved by replacing a/at and a/ax in terms of D/af by

a/at = ft a/af , a/ax = fx a/af, (9a)

and subsequently calculating ft and fx from (4)

ft -- H2 /D fx H /D , (9b)

with

D(f) = 1 -~ H X + H2, f t - H3,f .  (9c)

2) We then have to carry out the integration(s) until we find the solution

for F in terms of f. This will impose a restriction on some of the Hs and

require an appropriate choice for D. Since we are only interested in

stationary traveling wave solutions that do not change their shape, we

have to set

H2 = vH 1 , (10)

where v is the velocity of the traveling wave. Also as will be evident from

the examples in the following Sections, the final step will usually entail

an expression of the form
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dF/df = (D/H 1 ) FTI { P( F) }1/2, (11)

where TI is a constant and P(F) is a polynomial in F. The crux of the method

for finding implicit solutions lies in choosing D/H1 to be an appropriate

explicit function of F rather than of f. The reason for this will become

clear below.

3) After we have found the solution F, we have to determine the implicit

variable f and its relation with x and t. We will start from (9c) and (10) by

expressing (x - vt) in terms of H1 , H3 and D as

(x - vt) = [1 - D - H3,f]/Hl f . (12)

Substituting in (4b) with (10), we get

H3 ,f - (H1 ,f/H1 ) H3 = 1 - (H1 ,f/H1 )f -D, (13)

which, upon division by H1 , may be integrated to give

H3 (f) = f -H l (f) f (D/H 1 ) df + C H1 (f) , (14)

where C is an integration constant. By choosing an appropriate function of

f for H1 , we can solve for H3
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Note that D/H 1 may not be chosen as a function of f. If this choice

were made, eq. (11) may be reexpressed as j (D/H1 ) df = J dF/[F {P(F)}"/2],

enabling F to be expressed as a function of J (D/H1 ) df after integration.

But, from (4b) and (14) with C = 0, it readily follows that F would be an

explicit function of (x - vt). For the KdV, mKdV and BE equations, the

well-known hump-type solutions are then readily recovered.

For the rest of the paper we will tacitly assume that D/H1 is an

explicit function of F.

4) Finally, knowing the implicit solution (F and H3 as functions of f) and f

as a function of x and t as in (4b), we can plot the explicit solution u vs x

and t.

3 Example 1: The Harry Dym Equation

To make this paper self-contained, as well as to convince readers of

the applicability of our methodology outlined above, we will rederive the

implicit single solitary wave solution of the HD equation (3) [Hereman et al

1989].

In accordance with step (1), we first rewrite (3) entirely in terms of

f. To achieve this, we use (4) and (9) and obtain

-H2 Ff = F3 H 1 [3/,f (H1 /D) [oa/f (H1 / D) Ff ]. (15)
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As a second step in finding single solitary wave solutions we use

(10), and integrate eq. (15) twice

dF/df = (D/H 1) {-2c 1F- 2c 2 +vF - }112 , (16)

which is, indeed, of the form of (11). The quantities c1 and c2 are

integration constants. Now, we make the appropriate choice for D/H1,

namely

D/H1 = F, (17)

and we set v = c2 = -2c1 One more integration then yields

F(f) = tanh 2  { (v/4) 1/ 2  f}, (18)

where v has to be positive.

The third step involves the evaluation of H3 (f). Using (17) and (18) in

(14), we can write

H3 (f) = (1 - H1 (f) )f + CH l (f) + Hl (f) (4/v)1 /2tanh { (v/4)1/ 2  f}

(19)

The functions F(f) and H3 (f) are plotted in figs. 1 (a) and (b)

respectively, for H1 = constant = 1/2, v = 2 and C = 0. Figs. 1 (c) and (d)



show u(x,t) and H3 (x,t) = H3 (f) vs. x, at t = 0, and were plotted in

accordance with step 4 of the general procedure. Our result is similar to

the solution reported by Hereman et al (1989).

4 Example 2 : The Korteweg-de Vries Equation

As a second example to show the implementation of implicit solutions

we have chosen the KdV equation [Korteweg and de Vries 1895, Lamb

1980, Hereman et al 1986]

ut+a uux +U3x=, (20)

where a is a nonlinearity constant, and where the coefficient of the

dispersive term u3x has been scaled to unity.

Combining (4), (9) and (10), u and its derivatives are expressible as

u(x,t) F(f)

ut ) -v(H l / D) Ff

ux  )(H 1 /D) Ff

U2x (H l / D ) a/Df [(Hl / D ) Ff]

U3x - (HI/D) aiof [(HI/D) a/f ((HI/D) Ff]] (21a)

with
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D(f) = 1 H1 ,f (x -vt) - H3 ,f  (21b)

With the above substitutions, (20) reads

-v Ff + a FFf + DO/f [(Hl/D)a af [(HI/D)F f ]]= 0. (22)

Hence, upon two integrations, (22) becomes

dF/df = D/H 1 {-(a/3)F 3 + vF 2 + 2c 1 F + 2c2 }1/ 2 , (23)

where c I and c2 are integration constants. Choosing c2 = 0 and D/H1 =

(-F) 1/ 2 for convenience, (23) is readily integrated [Gradshteyn and Ryzhik

1984] to obtain

-b +[(4ac - b2 ) th2 (4)/(1 - th2 (g) ) ]1/2

F(f) = , (24a)
[b 2 - 4ac th2 (4)]/ [2a (1 - th2 (g))]

with

c =x/3, b = -v, a = -2c1 > 0, b2  __ 4ac,

- (a) 1/ 2 f. (24b)

Since we have the solution for F(f), (14) gives a relationship between

H1 and H3 . For the particular case where H1 is constant we would have
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H3 (f) f - HlJ (-F )112 df + C H 1  (25)

Figs. 2 (a),(b) show both F and H3 for H1 = a = b (=-v) - c = 1 and C = 0

as functions of f, while figs. 2 (c),(d) show u(x,t) and H3 (x,t) = H3 (f) as

functions of x - vt at t=0. H3 is numerically computed using (14), (23) and

(24). Thereafter, x - vt is computed as a function of f using (4b) and (10),

and combined with figs. 2 (a),(b) to generate figs. 2 (c),(d).

In order to be absolutely sure that we have, in fact, found a new

solution, we program the KdV equation (20) with the initial condition as in

fig. 2 (c). A finite difference scheme with proper modification to ensure

stability of the numerical algorithm, as suggested by Dodd et al (1982), is

employed. This demands ensuring that At /(Ax) 3  (4 + (Ax) 2 luo) -1 where

At, Ax are the time and space step sizes and u0 is the maximum value of f

over the range of interest. Note that (20) has been written in a moving

frame of reference with a velocity co , which though explicitly absent

from (20) and, hence, from the program, implicitly comes in through the

ratio Ax/At. The computational advantage in programming (20) in the

traveling frame lies in the fact that a much smaller grid size may be used.

Fig. 3 shows the propagation of the initial condition as in fig. 2(c) over t =

3.33 .10 - 3 . With the choice of Ax = 2.83 .10 - 3 and At = 5.553 .10 - 9 ; cO

becomes equal to 509637.11, corresponding to a translation of 1698 in the

laboratory frame of reference. The figures have been drawn in the

laboratory frame of reference to explicitly bring out the preservation of

the waveshape after a distance 1698 of travel, which corresponds to about
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566 times the width of the initial pulse. Fig 4 shows the distortion after

propagation for an initial condition 2u(x,0) with u(x,0) as in fig. 2(c). An

initial condition 1/2 u(x,0) also shows similar distortion after the same

distance of propagation.

5 Example 3 : The Modified Korteweg-de Vries Equation

The mKdV equation [Lamb 1980, Dodd et al 1982] is quite similar to

the KdV but has a cubic nonlinearity. Both equations are connected by the

Miura transformation [Lamb 1980]. If u is a solution to the mKdV equation

ut-a u 2 ux +U3x =0, (26)

then,

w = cc ( U2 + (6/(x)1/ 2  Ux ) a/ , (27)

is a solution to the KdV equation

wt+a, wwx +W3x =0. (28)

As in the the KdV case, we use substitutions as in (21) to rewrite

(26) as

-vFf + a F2 Ff + D/f [(H 1 /D)a/af [(H 1 /D) Ff ]] = 0, (29)
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After three integrations, (29) becomes

f =f (D/H 1 )'l{-(c/6)F 4 - vF2 + 2clF + 2c2 }'1/2 dF.

(30)

We now introduce a new function G such that

F = (-G) 1/2 , (31)

and select

D/H1 = F. (32)

With these assumptions, and upon setting c1 = 0, eq. (30) becomes

f = G ' 1{-(a/6)G2 + vG + 2c 2 }" 2 d. (33)

As may be readily verified the solution for G is expressible as [Gradshteyn

and Ryzhik 1984]

-b + [ (4ac - b2 ) th2 (4)/(1 th 2 (4) ) ]1/2

G(f) = (34a)
[b 2 - 4ac th 2 (4)]/ [2a (1 th2 ( ) )]
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with

c = - a/6, b = v, a = 2c2 > 0, E = -(a)1 / 2 f. (34b)

The solution to (29) then finally is

[ b - [ (4ac - b2 ) th2 (g)/(1 - th2 (g) ) ]1/2 172

F(f) = 1 (35)
[b 2 - 4ac th 2 ( )]/ [2a (1 - th2 (g) )] I

while H3 from eq. (14), upon taking H, (f) = f for variety, is

H3 (f) = (C + 1)f - f f F df. (36)

Figs. 5 (a), (b) and (c),(d) show F and H3 for Hl (f) = f, a = 3, b = 1, c =

0.25 and C = 1 as functions of f and, u, H3 as functions of x - vt at t = 0,

respectively.

Straightforward application of the Miura transformation will lead us

to yet another solution to the KdV equation.

6 Example 4 : The Boussinesq Equation

As an example for a wave equation we choose the BE equation which
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was first derived by Boussinesq [Boussinesq 1871,1872] to describe

shallow-water waves propagating in both directions. It has been also used

to describe displacements in a one-dimensional lattice with an exponential

potential [Zabusky 1967]. The assumed form for the BE equation will be

u2t-u2x-u4x +3a (u2 )2x =0 (37)

Adhering to the strategy of the method, we involve (21) in (37) to

give,

v 2 a/af [(HI/D)F f ] - DOf [(HI/D)F f - a/af [(H1 /D)a/af [(Hl/D)a/ f

[(HI/D) Ff ]]] + 6a D/af (HI/D) F Ff = 0. (38)

After two integrations, we obtain

(v2 - 1) F - (H1 ID)a/af [(HI/D) Ff ] + 3a F2 = c1f + c2 , (39)

where cI, c2 are integration constants. Choosing cI = 0, then multiplying

by Ff and next integrating for a third time, results in

1/2 (v2 - 1)F2 - 1/2 [(HI/D) F, ]2 + a F3  =c 2 F + c3

(40)
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where c3 is another integration constant.

Following the same steps as in Section 4 we end up with the same

answer as for the KdV :

-b ± [ (4ac - b2 ) th2 ()/(1- th 2 (g) ) ]1/2
F (f)= ' (41a)[b 2 - 4ac th2 (t)]/ [2a (1 - th2 (g) )]

but with

c = -2a, b = (1 -v 2 ) , a = 2c 2 >0, = (a)1/ 2 f, (41b)

and

H3 (f) = f - H1 (f) f (-F)1 / 2  df + C H1 (f) . (42)

With H1 = a = b = C = 1 and c = 2, the plots for the BE equation become

identical to figs 2(a),(b),(c) and (d) drawn for the KdV equation.

7 Discussion and Conclusion

Through the above examples of the HD, KdV, mKdV and the BE

equations we have shown the simplicity and the ease of the method for
finding implicit solutions. We may remark that the integrability of the PDE

is not essential for the existence of implicit solutions. For instance, the

nonintegrable modifications of the BE (e.g., the improved Boussinesq and
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the modified improved Boussinesq equations [Iskandar and Jain 1980,

Soerensen et al 1982]) may be shown to possess implicit solitary wave

solutions similar to that of the BE. This is because the resulting ODE after

the change of variables to a traveling frame of reference, is similar to

(39).

The effectiveness of the method is limited by the class of integrals

expressible in closed form which, in turn, imposes a severe restriction on

the degree of nonlinearity in the PDE. For instance the generalized HD

equation ut = un u3x may be shown to have nonphysical solutions for n = 1

and 2. For n = 4, a tanh2 -type solution for F(f) is possible through a clever

choice of D/H1 = F (F/(1 + 2F)) 112 . For n > 4, it is not possible to obtain

closed form solutions. Similarly, in the class of generalized KdV equations

ut + aunux + u3x = 0, closed form solutions are obtainable for n = 4 over

and above the cases n = 1 (KdV) and n - 2 (mKdV) discussed in the paper.

Specifically, for n = 4, the choice D/H1 - 1 / 2(2 + F2 ) yields a tanh-type

solution for F(f), with proper choices for some of the integration

constants. Again, for n = 3 and n > 4, no closed form solutions appear to be

possible.

Notwithstanding these limitations, it must be reiterated that the

implicit solutions derived in this paper for the KdV, mKdV and BE equations

are new and not just the previously known hump-type solitary wave

solutions in disguise. It is clear from the discussion in the Introduction

that the implicit solution to, for instance, the KdV equation, is inherently

different from that of the HD equation or solution of the latter

transformed hodographically. Furthermore, conventional solutions of the
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KdV, mKdV and BE equations are obtainable only by.choosing D/H1 as a

function uf f rather than F. Moreover, the solutions of the above equations,

when plotted, are cusp-type and different from the conventional sech or

sech 2 -type solutions. Finally, when allowed to propagate in accordance to

their respective equations, the solutions show no change in shape. Further

work is being done to employ this technique for more complicated

examples including coupled systems.
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